No. of Printed Pages: 7

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

December, 2019

BCS-054 : COMPUTER ORIENTED NUMERICAL
TECHNIQUES

Time: 3 Hours

Maximum Marks: 100

Note: Question No. 1 is compulsory. Attempt any three more questions from the questions no. 2 to 5. Use of any calculator is permitted.

- (a) Find the absolute error and relative error in the numbers 432.8 and 0.12584 if four digit mantissa is used and chopping is used for approximation.
 - (b) Round the following numbers to two decimal places: 2
 38.21416, 4.3742, 82.375, 2.4869

(c) For the following two floating point numbers:

$$x_1 = 0.5527 \times 10^4$$

and
$$x_2 = 0.6243 \times 10^3$$

find $x_1 - x_2$. The result should be rounded to four decimal digits.

- (d) Find the product of x₁ and x₂ given in
 Q. No. 1 (c) give. The result should be chopped to four decimal digits.
- (e) Find the Newton's forward difference interpolating polynomial for the following data. Hence obtain the value of f(x) at x = 1.5:

x	f(x)
1	34
2	6 0
3	90
4	124
. 5	162
6	204

equations in matrix form:

 $\mathbf{2}$

5

2

3

x + 2y + 3z = 14

(f)

- x y = -1y + 3z = 11
 - (g) Solve the following system of linear equations using Gauss-Seidel iterative method:
 - x + 6y = 134x - y = 2
- Perform two iterations, taking x = 0 and y = 0 as the initial values. (h) Find an interval in which the following
 - equation has a positive root: $2x^3 + x^2 - 20x + 12 = 0$
 - (i) Find Δf for the following functions for some h > 0:
 - $(i) \quad f(x) = 3x^2$
 - f(x) = 2x
 - (j) Find the approximate value $I = \int_0^1 \frac{dx}{1 + \mu^2}$ using Trapezoidal rule dividing the interval into five equal parts.

10

- 2. (a) Using an 8-decimal digit floating point representation (4 digits for mantissa, 2 for exponent and 1 each for sign for exponent and sign for mantissa) represent the following numbers in normalised floating point from (using chopping if required): 6
 - (i) 92752
 - (ii) -93.231
 - (iii) -0.0012345
 - (b) Solve the following system of linear equations using Gaussian elimination method:

$$x_{1} - x_{2} - x_{3} = -3$$

$$2x_{1} + 3x_{2} + 5x_{3} = 7$$

$$x_{1} - 2x_{3} + 3x_{2} = -11$$

- (c) Give one example each of the following:
 - (i) Ill conditional problem
 - (ii) Ordinary differential equation (ODE) of degree 3 and order 2
 - (iii) A system of inconsistent linear equations in two variables.

6

3. (a) Consider the initial-value problem:

$$y' = 0.2xy, y(1) = 1$$

Use Euler's method to obtain an approximation to y(1.2) using h = 0.1.

approximation to y(1.2) using n = 0.1.

(b) Using Lagrange's interpolation formula, find the form of the function y(x) from the

following table. Also compute $f(3)$:		7
x dell'	У	
0 100	6	
John 76	20	
5	56	

- (c) Write the expressions, one for each, which is obtained by applying each of the following operators to f(x) for some h > 0:
 - (i)
 - (ii) δ
 - (iii) μ
 - (iv) E
 - Derive the relation between δ and E.

P. T. O.

3

Download all NOTES and PAPERS at Stude

4. (a) Solve the following system of linear equations using partial pivoting: 10

$$x + y - 5z = 0$$
$$5x + 2y - z = 18$$

2x-2y+z=3(b) Find a real root for the equation $x^3+x-5=0$

Using Regula-Falsi method, taking x coordinates of initial points as x = 0 and x = 2. Perform only two iterations of the method.

(c) Make the Newton's divided difference table for the following data:

or the following data:	
x	- f(x)
10 4 1 1 1 1 1 1	10
2	20
4	40
8	80

5. (a) Explain the concept of overflow and underflow in the context of decimal floating point number with the help of **one** example of each.

- (b) Find by Newton-Raphson's method, the real root of the equation $x^2 3x + 1 = 0$ taking x = 2 as the starting value. Show three iterations.
- (c) Apply Newton's backward difference formula to the data below to obtain a polynomial of degree 4 in x:

x	У
1	N. C. A.
1 2 3 4 4 4 1	-1
3 Milde	1
10.	-1
5	1

BCS-054 7,000